Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Public Health ; 10: 933075, 2022.
Article in English | MEDLINE | ID: covidwho-2215404

ABSTRACT

Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.617.2 (also named the Delta variant) was declared as a variant of concern by the World Health Organization (WHO). This study aimed to describe the outbreak that occurred in Nanjing city triggered by the Delta variant through the epidemiological parameters and to understand the evolving epidemiology of the Delta variant. Methods: We collected the data of all COVID-19 cases during the outbreak from 20 July 2021 to 24 August 2021 and estimated the distribution of serial interval, basic and time-dependent reproduction numbers (R0 and Rt), and household secondary attack rate (SAR). We also analyzed the cycle threshold (Ct) values of infections. Results: A total of 235 cases have been confirmed. The mean value of serial interval was estimated to be 4.79 days with the Weibull distribution. The R0 was 3.73 [95% confidence interval (CI), 2.66-5.15] as estimated by the exponential growth (EG) method. The Rt decreased from 4.36 on 20 July 2021 to below 1 on 1 August 2021 as estimated by the Bayesian approach. We estimated the household SAR as 27.35% (95% CI, 22.04-33.39%), and the median Ct value of open reading frame 1ab (ORF1ab) genes and nucleocapsid protein (N) genes as 25.25 [interquartile range (IQR), 20.53-29.50] and 23.85 (IQR, 18.70-28.70), respectively. Conclusions: The Delta variant is more aggressive and transmissible than the original virus types, so continuous non-pharmaceutical interventions are still needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Bayes Theorem , China/epidemiology
2.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2147764

ABSTRACT

Objectives Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.617.2 (also named the Delta variant) was declared as a variant of concern by the World Health Organization (WHO). This study aimed to describe the outbreak that occurred in Nanjing city triggered by the Delta variant through the epidemiological parameters and to understand the evolving epidemiology of the Delta variant. Methods We collected the data of all COVID-19 cases during the outbreak from 20 July 2021 to 24 August 2021 and estimated the distribution of serial interval, basic and time-dependent reproduction numbers (R0 and Rt), and household secondary attack rate (SAR). We also analyzed the cycle threshold (Ct) values of infections. Results A total of 235 cases have been confirmed. The mean value of serial interval was estimated to be 4.79 days with the Weibull distribution. The R0 was 3.73 [95% confidence interval (CI), 2.66–5.15] as estimated by the exponential growth (EG) method. The Rt decreased from 4.36 on 20 July 2021 to below 1 on 1 August 2021 as estimated by the Bayesian approach. We estimated the household SAR as 27.35% (95% CI, 22.04–33.39%), and the median Ct value of open reading frame 1ab (ORF1ab) genes and nucleocapsid protein (N) genes as 25.25 [interquartile range (IQR), 20.53–29.50] and 23.85 (IQR, 18.70–28.70), respectively. Conclusions The Delta variant is more aggressive and transmissible than the original virus types, so continuous non-pharmaceutical interventions are still needed.

3.
Med Sci Monit ; 27: e929986, 2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1148369

ABSTRACT

BACKGROUND This retrospective study aimed to investigate the factors associated with disease severity and patient outcomes in 631 patients with COVID-19 who were reported to the Jiangsu Commission of Health between January 1 and March 20, 2020. MATERIAL AND METHODS We conducted an epidemiological investigation enrolling 631 patients with laboratory-confirmed COVID-19 from our clinic from January to March 2020. Patients' information was collected through a standard questionnaire. Then, we described the patients' epidemiological characteristics, analyzed risk factors associated with disease severity, and assessed causes of zero mortality. Additionally, some key technologies for epidemic prevention and control were identified. RESULTS Of the 631 patients, 8.46% (n=53) were severe cases, and no deaths were recorded (n=0). The epidemic of COVID-19 has gone through 4 stages: a sporadic phase, an exponential growth phase, a peak plateau phase, and a declining phase. The proportion of severe cases was significantly different among the 4 stages and 13 municipal prefectures (P<0.001). Factors including age >65 years old, underlying medical conditions, highest fever >39.0°C, dyspnea, and lymphocytopenia (<1.0×109/L) were early warning signs of disease severity (P<0.05). In contrast, earlier clinic visits were associated with better patient outcomes (P=0.029). Further, the viral load was a potentially useful marker associated with COVID-19 infection severity. CONCLUSIONS The study findings from the beginning of the COVID-19 epidemic in Jiangsu Province, China showed that patients who were more than 65 years of age and with comorbidities and presented with a fever of more than 39.0°C developed more severe disease. However, mortality was prevented in this initial patient population by early supportive clinical management.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , Adult , Aged , COVID-19/diagnosis , COVID-19/history , COVID-19/virology , China/epidemiology , Comorbidity , Female , Geography, Medical , History, 21st Century , Humans , Male , Middle Aged , Mortality , Open Reading Frames , Population Surveillance , RNA, Viral , Real-Time Polymerase Chain Reaction , Risk Factors , SARS-CoV-2/classification , SARS-CoV-2/genetics , Seasons , Severity of Illness Index , Viral Load
4.
Epidemiol Infect ; 149: e48, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1129262

ABSTRACT

To understand the characteristics and influencing factors related to cluster infections in Jiangsu Province, China, we investigated case reports to explore transmission dynamics and influencing factors of scales of cluster infection. The effectiveness of interventions was assessed by changes in the time-dependent reproductive number (Rt). From 25th January to 29th February, Jiangsu Province reported a total of 134 clusters involving 617 cases. Household clusters accounted for 79.85% of the total. The time interval from onset to report of index cases was 8 days, which was longer than that of secondary cases (4 days) (χ2 = 22.763, P < 0.001) and had a relationship with the number of secondary cases (the correlation coefficient (r) = 0.193, P = 0.040). The average interval from onset to report was different between family cluster cases (4 days) and community cluster cases (7 days) (χ2 = 28.072, P < 0.001). The average time interval from onset to isolation of patients with secondary infection (5 days) was longer than that of patients without secondary infection (3 days) (F = 9.761, P = 0.002). Asymptomatic patients and non-familial clusters had impacts on the size of the clusters. The average reduction in the Rt value in family clusters (26.00%, 0.26 ± 0.22) was lower than that in other clusters (37.00%, 0.37 ± 0.26) (F = 4.400, P = 0.039). Early detection of asymptomatic patients and early reports of non-family clusters can effectively weaken cluster infections.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , China/epidemiology , Cluster Analysis , Female , Humans , Infant , Male , Middle Aged , Young Adult
5.
Transbound Emerg Dis ; 68(2): 773-781, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-690269

ABSTRACT

We investigated an outbreak of COVID-19 infection, which was traced back to a bathing pool at an entertainment venue, to explore the epidemiology of the outbreak, understand the transmissibility of the virus and analyse the influencing factors. Contact investigation and management were conducted to identify potential cases. Epidemiological investigation was carried out to determine the epidemiological and demographic characteristics of the outbreak. We estimated the secondary attack rate (SAR), incubation time and time-dependent reproductive number (Rt ) and explored the predisposing factors for cluster infection. The incubation time was 5.4 days and the serial interval (SI) was 4.4 days, with the rate of negative-valued SIs at 24.5%. The SAR at the bathing pool (3.3%) was relatively low due to its high temperature and humidity. The SAR was higher in the colleagues' cluster (20.5%) than in the family cluster (11.8%). Super-spreaders had a longer isolation delay time (p = .004). The Rt of the cluster decreased from the highest value of 3.88 on January 27, 2020 to 1.22 on February 6. Our findings suggest that the predisposing factors of the outbreak included close contact with an infected person, airtight and crowded spaces, temperature and humidity in the space and untimely isolation of patients and quarantine of contacts at the early stage of transmission. Measures to reduce the risk of infection at these gatherings and subsequent tracking of close contacts were effective.


Subject(s)
COVID-19/diagnosis , Disease Outbreaks , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/transmission , Child , Child, Preschool , China/epidemiology , Contact Tracing , Disease Transmission, Infectious , Female , Humans , Infant , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL